Macroscopic models of local field potentials and the apparent 1/f noise in brain activity.
Claude Bédard and Alain Destexhe

Biophysical Journal 96: 2589-2603, 2009.

Copy of the full paper (PDF)
The power spectrum of local field potentials (LFPs) has been reported to scale as the inverse of the frequency, but the origin of this “1/f noise” is at present unclear. Macroscopic measurements in cortical tissue demonstrated that electric conductivity (as well as permittivity) is frequency dependent, while other measurements failed to evidence any dependence on frequency. In the present paper, we propose a model of the genesis of LFPs which accounts for the above data and contradictions. Starting from first principles (Maxwell equations), we introduce a macroscopic formalism in which macroscopic measurements are naturally incorporated, and also examine different physical causes for the frequency dependence. We suggest that ionic diffusion primes over electric field effects, and is responsible for the frequency dependence. This explains the contradictory observations, and also reproduces the 1/f power spectral structure of LFPs, as well as more complex frequency scaling. Finally, we suggest a measurement method to reveal the frequency dependence of current propagation in biological tissue, and which could be used to directly test the predictions of the present formalism.