Abstract

Pacemaker-induced coherence in cortical networks.
Alain Destexhe and Agnessa Babloyantz

Neural Computation 3: 145-154, 1991.

Copy of the full paper (PDF)
Abstract
A simple mathematical model of cortical tissue is introduced and the system’s dynamics is monitored when a small subset of neurons is submitted to oscillatory inputs of various frequency and wave form. In the absence of input, the system shows desynchronized or ‘turbulent’ behavior. The oscillatory input synchronizes the neuronal activity, which is strongest for inputs of low frequency. The increase of spatial coherence is estimated from the spatial autocorrelation function whereas the increase in temporal coherence is evaluated from correlation dimensions. The model accounts qualitatively for some of the features of the thalamocortical system.