Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons.
Martin Pospischil, Maria Toledo-Rodriguez, Cyril Monier, Zuzanna Piwkowska, Thierry Bal, Yves Frégnac, Henry Markram and Alain Destexhe

Biol. Cybernetics 99: 427-441, 2008.

Copy of the full paper (PDF)
We review here the development of Hodgkin-Huxley (HH) type models of cerebral cortex and thalamic neurons for network simulations. The intrinsic electrophysiological properties of cortical neurons were analyzed from several preparations, and we selected the 4 most prominent electrophysiological classes of neurons. These 4 classes are “fast spiking”, “regular spiking”, “intrinsically bursting” and “low-threshold spike” cells. For each class, we fit “minimal” HH type models to experimental data. The models contain the minimal set of voltage-dependent currents to account for the data. To obtain models as generic as possible, we used data from different preparations in vivo and in vitro, such as rat somatosensory cortex and thalamus, guinea-pig visual and frontal cortex, ferret visual cortex, cat visual cortex and cat association cortex. For two cell classes, we used automatic fitting procedures applied to several cells, which revealed substantial cell-to-cell variability within each class. The selection of such cellular models constitutes a necessary step towards building network simulations of the thalamocortical system with realistic cellular dynamical properties.