Propagating waves in thalamus, cortex and the thalamocortical system: experiments and models.
Lyle E. Muller and Alain Destexhe

Journal of Physiology (Paris) 106: 222-238, 2012.

Copy of the full paper (PDF)
Propagating waves of activity have been recorded in many species, in various brain states, brain areas, and under various stimulation conditions. Here, we review the experimental literature on propagating activity in thalamus and neocortex across various levels of anesthesia and stimulation conditions. We also review computational models of propagating waves in networks of thalamic cells, cortical cells and of the thalamocortical system. Some discrepancies between experiments can be explained by the “network state”, which differs vastly between anesthetized and awake conditions. We introduce a network model displaying different states and investigate their effect on the spatial structure of self-sustained and externally driven activity. This approach is a step towards understanding how the intrinsically-generated ongoing activity of the network affects its ability to process and propagate extrinsic input.