Current Research Grants

The Human Brain Project (HBP) is a European project of about 200 laboratories across Europe and all over the world, and over a total period of 10 years. It is financed by the European Commission. This type of large project, called Flagship, was awarded in January 2013 after a competition of two years. The Human Brain Project is coordinated by Henry Markram (EPFL, Switzerland) and Karlheinz Meier (University of Heidelberg, Germany). The HBP begins on October 1st, 2013.

Proposal abstract: Understanding the human brain is one of the greatest scientific challenges of our time. Such an understanding will lead to fundamentally new computing technologies, transform the diagnosis and treatment of brain diseases, and provide profound insights into our humanity. Today, for the first time, exponential improvements in the capabilities of modern ICT open up new opportunities to investigate the complexity of the brain. The goal of the Human Brain Project (HBP) is thus to build an integrated ICT infrastructure enabling a global collaborative effort to address this grand challenge, and ultimately to emulate the computational capabilities of the brain. The infrastructure will consist of a tightly linked network of six ICT platforms, which, like current large-scale physics facilities, will operate as a resource both for core HBP research and for external projects, chosen by competitive call.

The HBP will drive innovation in ICT, creating new technologies for
  • i) interactive supercomputing, visualisation and big data analytics;
  • ii) federated analysis of globally distributed data;
  • iii) simulation of the brain and other complex systems;
  • iv) objective classification of disease;
  • v) scalable and configurable neuromorphic computing systems, based on the brain’s principles of computation and cognition and its architectures.

Expected outputs include simulations of the brain that reveal the chains of events leading from genes to cognition; simulations of diseases and the effects of drugs; early diagnoses and personalised treatments; and a computing paradigm that overcomes bottlenecks in power, reliability and programmability, captures the brain’s cognitive capabilities, and goes beyond Moore’s Law. Overall, the HBP will help to reach a unified understanding of the brain, reduce the economic and social burden of brain disease, and empower the European pharmaceutical and computing industries to lead world markets with enormous potential for growth.

Alain Destexhe is one of the co-directors of the project (“Division Leader”), and is leading the theoretical neuroscience activities in the project. It is planned to create a European Institute for Theoretical Neuroscience (EITN), under the direction of Alain Destexhe, and which will be located around Paris (for more details, see the EITN website). The ICN also participates to the Cognitive Neuroscience, Neuroinformatics, Neuromorphic Engineering and Teaching aspects of the HBP (Yves Fregnac, Andrew Davison, Kirsty Grant).

For more details, see the Human Brain Project page; see also the Human Brain Project website.

In collaboration with a number of different laboratories around Europe (including M. Pannetier at the CEA of Paris as coordinator, S. Cardoso at the University of Lisbon, Pascal Fries at the ESI in Frankfurt, Lauri Parkkonen Aalto University), we have obtained a STREP research grant from the European Commission, called “MAGNETRODES”. This 3-year project will run from January 1st 2013 to December 31st 2015.

The goal of the MAGNETRODES project is to design and fabricate new types of microdevices to measure magnetic fields in neural tissue, and use that device to charaterize the magnetic fields generated by neurons, using experiments and modeling, as well as for spectroscopy purposes. The magnetic fields will be recorded at different scales, from single neurons in vitro to large portions of neural tissue in vivo. The research will be carried out by an interdisciplinary consortium, involving 2 groups of neuroscience, 2 groups of neuro-engineering, one group of theoretical neuroscience and one group of physicists.

Proposal abstract: The main goal of the MAGNETRODES project is to develop a new generation of neuroscience tools for electromagnetic measurement and spectroscopy at the neuron level. Spin electronics offers nowadays the possibility to create very sensitive, micrometer-scale magnetic field detectors. Here, we propose to exploit this technological advance to create novel tools for probing neuronal magnetic fields at the cellular level. The first goal of the project will be to develop the magnetic equivalent of an electrode, a “magnetrode”, sensitive enough to detect the very small magnetic fields induced by the ionic currents flowing within electrically active neurons, and small enough to probe a limited number of cells. We will adapt magnetrodes also for local nuclear magnetic resonance spectroscopy (MRS); thus, they could record both electromagnetic and chemical activity of neurons. In addition, means for local electric or magnetic stimulation could be integrated in to a magnetrode. We will test magnetrodes in vitro and in vivo at various spatial scales, from brain areas down to single neurons. In parallel, based on the measurements with magnetrodes, we will augment existing computational models and develop new ones to characterize the electromagnetic fields emitted by neurons and neuron assemblies. We will use these models to bridge from the activity of single neurons to macroscopic non-invasive measurements such as electroencephalography (EEG) and magnetoencephalography (MEG). This project shall pave the way towards “magnetophysiology”, which enables investigating electric activity of neurons without disturbing the ionic flow and without physical contact to the cell. We will create new experimental and modeling tools for magnetic measurements and stimulation at neuron scale. The resulting techniques will be applicable in neurosciences, brain-computer interfacing and possibly in the treatment of certain brain diseases.

In collaboration with a number of different laboratories around Europe (including K. Meier at University of Heidelberg, A.M. Thomson at University of London, H. Markram at EPFL, W. Gerstner at EPFL, W. Maass at University of Graz, A. Aertsen at BCCN Freiburg, and others), we have obtained an Integrated Project from the European Commission. This 5-year project was from September 2005 to August 2010. A Marie-Curie training network called FACETS-ITN, was obtained for training PhD students and will run till September 2013. The home page of the FACETS project can be found at or The home page of FACETS-ITN is at

The goal of the FACETS project is to create a theoretical and experimental foundation for the realisation of novel computing paradigms which exploit the concepts experimentally observed in biological nervous systems. The research will be carried out by an interdisciplinary consortium, involving 16 groups of neuroscientists, computer scientists and physicists. The institutions involved represent a major fraction of the European groups working in the relevant fields. The three major lines of research will be: (a) experimental characterisation of cortical cells and networks in-vivo and in-vitro; (b) study of theoretical and computer based models of cells and networks; (c) design, construction and operation of VLSI circuits emulating the biological example. Each of the 3 lines involves studies on the level of individual computing elements (neurons) and on the network level. The continuous interaction and scientific exchange between biological experiments, computer modelling and hardware emulations within the project provides a unique research infrastructure that will in turn provide an improved insight into the computing principles of the brain. This insight may potentially contribute to an improved understanding of mental disorders in the human brain and help to develop remedies.

In collaboration with a number of different laboratories around Europe (including K. Meier at University of Heidelberg, H. Markram at EPFL, W. Gerstner at EPFL, W. Maass at University of Graz, G. Deco at University of Barcelona, F. Helmchen at the University of Zurich, and others), we have obtained an Integrated Project from the European Commission. This 4-year project is running from January 1st, 2011 to December 2014.

The home page of the BrainScaleS project can be found at

The BrainScaleS project aims at understanding function and interaction of multiple spatial and temporal scales in brain information processing. The fundamentally new approach of BrainScaleS lies in the in-vivo biological experimentation and computational analysis. Spatial scales range from individual neurons over larger neuron populations to entire functional brain areas. Temporal scales range from milliseconds relevant for event based plasticity mechanisms to hours or days relevant for learning and development. In the project generic theoretical principles will be extracted to enable an artificial synthesis of cortical-like cognitive skills. Both, numerical simulations on petaflop supercomputers and a fundamentally different non-von Neumann hardware architecture will be employed for this purpose.

Neurobiological data from the early perceptual visual and somatosensory systems will be combined with data from specifically targeted higher cortical areas. Functional databases as well as novel project-specific experimental tools and protocols will be developed and used. New theoretical concepts and methods will be developed for understanding the computational role of the complex multi-scale dynamics of neural systems in-vivo. Innovative in-vivo experiments will be carried out to guide this analytical understanding.

Multiscale architectures will be synthesized into a non-von Neumann computing device realised in custom designed electronic hardware. The proposed Hybrid Multiscale Computing Facility (HMF) combines microscopic neuromorphic physical model circuits with numerically calculated mesoscopic and macroscopic functional units and a virtual environment providing sensory, decision-making and motor interfaces. The project also plans to employ petaflop supercomputing to obtain new insights into the specific properties of the different hardware architectures. A set of demonstration experiments will link multiscale analysis of biological systems with functionally and architecturally equivalent synthetic systems and offer the possibility for quantitative statements on the validity of theories bridging multiple scales. The demonstration experiments will also explore non-von Neumann computing outside the realm of brain-science.

The BrainScaleS consortium has several PhD and post-doc fellowships available and is currently looking for filling these positions. Please contact the different laboratories or see the BrainScaleS webpage.
In collaboration with Yves Frégnac and Thierry Bal (ICN), we have obtained a three-year grant from the ANR. This project (coordinated by Y. Frégnac) is running January 2011 to December 2013.

Summary of the project: One of the characteristics of neural activity in neocortical networks is that there is a considerable level of self-sustained ongoing activity, which exhibits highly complex but structured spatiotemporal patterns of action potentials and whose irregularity in time is often interpreted as “noise”. In view of the recurrent nature of the network, where most links between neural units are achieved through distributed reverberating loops, it is therefore impossible to apply the classic paradigm of distinguishing the “signal” from the “noise”.

In this project, we would like to depart from this paradigm and rather consider that information is potentially present in ongoing activity (for instance as internally stored memories) and that external inputs, carrying stimulus-driven information, are interacting non-linearly with the ongoing activity. We aim at characterizing network states using diverse methods applied at different scales of spatial integration, from the microscopic (conductance and single-neuron level), up to large populations of neurons measured mesoscopically (multiple recordings and voltage sensitive dye imaging). We will provide a characterization of the correlation state of network activity, as seen through the measurement techniques associated to each scale:

  • I.At the single-neuron level, intracellular recordings will be used to resolve subthreshold membrane potential fluctuations, of synaptic origin, and analyze a dynamic multiscale “image” of the activity of the effective afferent network in which the cell is embedded at any point in time.
  • II.At the level of populations, the recording of many neurons simultaneously will be confronted with theories inspired from Ising models and provide a characterization of the network state through pairwise correlations.
  • III.At more macroscopic levels, we will use local field potential recordings using array of electrodes, and voltage-sensitive dye imaging to record simultaneously larger assemblies and extract possible relations between correlation patterns and the context of functional cortical maps.

By using theoretical approaches adapted to such scales, such as electrodynamics or mean-field models, we also hope to provide characterizations of network states during ongoing activity, and during visual inputs of different dimensionalities. In all cases, the in vivo experiments and modeling will be done in parallel with in vitro experiments to determine key aspects and correlation measures in controlled conditions, as well as to validate or test some of the assumptions of the models. These different studies should allow us to study the interdependency between different levels of neural-based processing in neocortical networks, and address experimentally the concepts of âemergenceâ (micro to macro) and âimmergenceâ (macro to micro) characteristic of complex dynamic systems.

By this interdisciplinary approach, we hope to provide decisive data, tools and concepts on the different network states involved in visual processing, with possible future applications as diverse as artificial vision, “mind reading” in brain imaging, brain and machine interface in the field of Neuroprosthetics and Medicine, and life-inspired computing architectures in the field of Information and Technology.
Participation to other Research Grants
We also participate as scientific advisor to the Blue Brain Project, which is hosted by the group of Henry Markram at the EPFL in Lausanne (Switzerland). The project involves IBM, as well as a number of different laboratories around the world. The home page of the BlueBrain project can be found at

The Blue Brain Project will consist in gathering knowledge from different fields such as neuroanatomy, neurophysiology and computational neuroscience. The goal is to investigate cortical computations using an accurate software replica of neocortical microcircuits (“the Blue Column”). This sophisticate model will be run on a 8K-processor Blue Gene supercomputer build by IBM. The Blue Column will be composed of 104 morphologically complex neurons, which will be reconstructed from in vitro experiments and matched to models in order to capture their main electrical properties. The neurons will be interconnected in a 3-dimensional (3D) space with 107 -108 dynamic synapses, directly derived from morphological measurements.

We participate as visiting researchers to the “COLAMN” project (A Novel Computing Architecture for Cognitive Systems based on the Laminar Microcircuitry of the Neocortex), which is funded by the EPSRC (Engineering and Physics Research Council) of U.K. This project gathers a large consortiums of laboratories in the UK (Alex Thomson, Mike Hausser, Mike Denham, Vincenzo Crunelli, David Willshaw, Mark van Rossum and others). The homepage of the project can be found in .
The “MANDy” project consists of putting together mathematicians and neuroscientists to investigate various problems of theoretical neuroscience, as well as create a community of mathematical neuroscience within the Paris region. This project is supported by the ANR. It is coodinated by Michelle Thieullen (University Pierre & Marie Curie, Paris) and runs from September 2009 to August 2012. The home page of the MANDy project can be found at
Past Research Grants
In collaboration with Romain Brette and Olivier Faugeras (Ecole Normale Supérieure, Paris), and with Thierry Bal and Yves Frégnac (ICN), we have obtained a three-year grant from the ANR. This project (coordinated by A. Destexhe) was running from December 2006 till May 2010. The home pages of the project are at ICN: hr-CORTEX, and at the Ecole Normale Supérieure:

The activated cerebral cortex displays “high-conductance states” characterized intracellularly by intense subthreshold fluctuations, which are due to the high level of activity in the local surrounding network. Present intracellular methods to characterize this activity are limited in resolution due to the bias introduced by recording electrodes. In the present project, we plan to address these limitations by proposing a new recording paradigm based on a computer-contolled feedback with the cell. Developing and implementing this paradigm will require a tight association between mathematics, computer science, computational neuroscience and intracellular electrophysiology (in vivo and in vitro). We aim at both the conception of novel methodologies, their testing in real neurons (essentially in vitro), as well as applying these methods to intracellular recordings in primary visual cortex in vivo.

The project combines different expertises, such as mathematics, computer science, computational neuroscience and intracellular electrophysiology (in vitro and in vivo), to yield accurate and reliable methods to properly characterize high-conductance states in neurons. We plan to address several of the caveats of present recording techniques, namely

  • 1) the impossibility to perform reliable high-resolution dynamic-clamp with sharp electrodes, which is the intracellular technique mostly used in vivo;
  • 2) the unreliability and low time resolution of single-electrode voltage-clamp recordings in vivo;
  • 3) the impossibility of extracting single-trial conductances from Vm activity in vivo.
We propose to address these caveats with the following goals:
  • 1. Obtain high-resolution recordings applicable to any type of electrode (sharp and patch), any type of protocol (current-clamp, voltage-clamp, dynamic-clamp) and different preparations (in vivo, in vitro, dendritic patch recordings).
  • 2. Obtain methods to reliably extract single-trial conductances from Vm activity, as well as to “probe” the intrinsic conductances in cortical neurons. These methods will be applied to intracellular recordings during visual responses in cat V1 in vivo.
  • 3. Obtain methods to extract correlations from Vm activity and apply these methods to intracellular recordings in vivo to measure changes in correlation in afferent activity.
  • 4. Obtain methods to estimate spike-triggered averages from Vm activity and obtain estimates of the optimal patterns of conductances that trigger spikes in vivo.
These results will be integrated into computational models to test mechanisms for selectivity. These methods will be based on a real-time feedback between a computer and the recorded neuron. This real-time feedback will be used not only to improve existing techniques, but also to extract essential information to better understand spike selectivity of cortical neurons in vivo.
In collaboration with Diego Contreras (University of Pennsylvania, USA) and Mavi Sanchez-Vives (University of Alicante, Spain), we have obtained a Program Grant from the Human Frontier Science Program. This 3-year project (coordinated by Diego Contreras) was running from February 2003 till February 2006. There is no home page for the project (but see the List of Awardees).

In this HFSP project, our plan was to evaluate how the rhythmic activity of the brain during slow wave sleep influences synaptic transmission and plasticity at a cellular and network level in the cerebral cortex. We have addressed this general question by combining three approaches: (i) Extra-, intracellular and optical recordings in mouse primary visual and somatosensory cortex in vivo; (ii) Extra-, intracellular and optical recordings in ferret primary visual and somatosensory cortex in vitro; (iii) Computational models of morphologicallyreconstructed cortical neurons and network simulations. Optical recordings were done using voltage sensitive dye fluorescence as well as calcium indicators and a fast CCD camera. Our working hypothesis was that periods of electroencephalogram (EEG) activation (wakefulness, REM) provide ideal conditions for “priming” cortical synapses and that these synapses are later subject to long-term changes during slow-wave sleep. We have tested this hypothesis by using various paradigms in vivo, in vitro, and in models. The project provided data essential to the long-term goal of establishing firm evidence for a role of slow wave sleep in memory consolidation. This research project led to several publications (see Publication list). In particular, we published a review article in Science.

SenseMaker In collaboration with a number of different laboratories around Europe (M. McGinnity at University of Ulster, F. Newell at Trinity College Dublin, K. Meier at University of Heidelberg, S. Renaud at University of Bordeaux), we have obtained an Research Project from the European Commission. This 3-year project was running from Octover 2002 till October 2005. The home page of the SenseMaker project can be found at The SenseMaker project had two principle aims. One is a project to combine biological, physical and engineering technological approaches in the production of a multi-sensory, task specific adaptable perception system. The second aim was to push forward knowledge of natural systems and to find the links between what we consider as biological principles and the science of mathematics, which has been used effectively by humans in the construction of intelligent machines.

This research project led to several publications (see Publication list).

In collaboration with Denis Paré (Laval University, Quebec; now at Rutgers University, USA), we have obtained a Foreign Research Grant (R01) from the NIH (National Institutes of Health). This three year grant (coordinated by Alain Destexhe) was run from 1999 to 2003. There is no home page for this project but information can be found at the NIH site.

This project (entitled “Impact of synaptic bombardment on neocortical neurons”) proposed to combine computational models and intracellular recordings of neocortical pyramidal cells in vivo to quantify the total amount of sustained synaptic activity and to study how it affects the integrative properties of pyramidal cells. The long-term objective of this project was to build better representations of neuronal networks of the neocortex during intense network activity similar to the waking state. This is of great benefit for investigating information processing paradigms that involve cortical networks. Experiments and models estimated the amount of synaptic conductances tonically activated in soma and dendrites, and how this could potentially affect the basic integrative and response properties of pyramidal cells.

This research project led to numerous publications and review articles (see Publication list).

While at Laval University (Québec), A. Destexhe was supported for 5 years by the Medical Research Council (MRC) of Canada (now called CIHR). This was the main research grant supporting his laboratory. The focus of this grant was on modeling thalamic and cortical oscillations based on electrophysiological measurements in vivo.

This research project led to numerous publications and one monograph (see Publication list).